Pengertian Tree dalam Struktur
Data
Merupakan salat Satu bentuk Struktur Data tidak linier Yang menggambarkanhubungan Yang bersifat hirarkis (hubungan one
to many) antara elemen-elemen.Tree Bisa didefinisikan sebagai kumpulan Simpul /
node dengan Satu elemenKHUSUS Yang disebut root Dan Node lainnya terbagi menjadi Himpunan-Himpunan Yang tak saling berhubungan Satu sama lainnya (disebut subtree). Untukjelasnya, di Bawah Akan diuraikan istilah-istilah umum dalam
tree.
Parent : predecssor satu level di atas
suatu node.
Child : successor satu level di bawah
suatu node.
Sibling : node-node yang memiliki parent
yang sama dengan suatu node.
Subtree : bagian dari tree yang berupa
suatu node beserta descendantnya dan memiliki semua karakteristik dari tree
tersebut.
Size : banyaknya node dalam suatu tree.
Height : banyaknya tingkatan/level dalam
suatu tree.
Root : satu-satunya node khusus dalam tree
yang tak punya predecssor.
Leaf : node-node dalam tree yang tak
memiliki seccessor.
Degree : banyaknya child yang dimiliki
suatu node.
Pengertian Binaary Tree dalam Struktur data Pohonbiner adalah pohon dengan syarat bahwa tiap node hanya memiliki boleh maksimal duasubtree dan kedua subtree tersebut harus terpisah. Sesuai dengan definisi tersebut, maka tiap nodedalam binary
tree hanya boleh memiliki paling banyak dua anak/child.
Gambar Binary Tree
Jumlah maksimum node pada setiap tingkat adalah 2n, Node pada binary
treemaksimumnya berjumlah 2n-1.
Tree merupakan salah satu bentuk struktur data tidak linear yang menggambarkan hubungan yang
bersifat hirarkis (hubungan one to many) antara elemen-elemen. Tree bisa
didefinisikan sebagai kumpulan simpul/node dengan satu elemen khusus yang
disebut Root dan node lainnya terbagi menjadi himpunan-himpunan yang saling tak
berhubungan satu sama lainnya (disebut subtree).
istilah-istilah umum dalam tree
Untuk jelasnya,
di bawah akan diuraikan istilah-istilah umum dalam tree :
a) Prodecessor :
node yang berada diatas node tertentu.
b) Successor :
node yang berada di bawah node tertentu.
c) Ancestor :
seluruh node yang terletak sebelum node tertentu dan terletak pada jalur yang
sama.
d) Descendant :
seluruh node yang terletak sesudah node tertentu dan terletak pada jalur yang
sama.
e) Parent :
predecssor satu level di atas suatu node.
f) Child :
successor satu level di bawah suatu node.
g) Sibling :
node-node yang memiliki parent yang sama dengan suatu node.
h) Subtree :
bagian dari tree yang berupa suatu node beserta descendantnya dan memiliki
semua karakteristik dari tree tersebut.
i) Size :
banyaknya node dalam suatu tree.
j) Height :
banyaknya tingkatan/level dalam suatu tree.
k) Root :
satu-satunya node khusus dalam tree yang tak punya predecssor.
l) Leaf :
node-node dalam tree yang tak memiliki seccessor.
m) Degree :
banyaknya child yang dimiliki suatu node.
contoh program tree
uses crt;
Type
Tree = ^Simpul;
Simpul = Record
Info : char;
Kiri : Tree;
Kanan : Tree;
End;
Function BARU(Hrf
: Char) : Tree;
Var Temp : Tree;
Begin
New(Temp);
Temp^.Info :=
Hrf;
Temp^.Kiri :=
NIL; Temp^.Kanan := NIL;
BARU := Temp;
End;
Procedure
MASUK(Var Pohon : Tree; Hrf : Char);
Begin
If Pohon = NIL
Then
Pohon :=
BARU(Hrf)
Else
Begin
If Pohon^.Info
> Hrf then
MASUK(Pohon^.Kiri,Hrf)
Else If
Pohon^.Info < Hrf then
MASUK(Pohon^.Kanan,Hrf)
Else
Writeln('Karakter',
Hrf, 'Sudah ada di Tree');
End;
End;
Procedure
PREORDER(Temp : Tree);
Begin
If Temp <>
NIL Then
Begin
Write(Temp^.Info,'
');
PREORDER(Temp^.Kiri);
PREORDER(Temp^.Kanan);
End;
End;
Procedure
INORDER(Temp : Tree);
Begin
If Temp <>
NIL Then
Begin
INORDER(Temp^.Kiri);
Write(Temp^.Info,'
');
INORDER(Temp^.Kanan);
End;
End;
AVL Tree adalah
Binary Search Tree yang memiliki perbedaan tinggi/ level maksimal 1 antara
subtree kiri dan subtree kanan. AVL Tree muncul untuk
menyeimbangkan Binary Search Tree. Dengan AVL Tree, waktu pencarian dan
bentuk tree dapat dipersingkat dan disederhanakan.
Gambar
AVL Tree
Penambahan
node di AVL Tree
Untuk menjaga tree tetap imbang,
setelah penyisipan sebuah node, dilakukan pemeriksaan dari node baru → root.
Node pertama yang memiliki |balance factor| > 1 diseimbangkan. Proses
penyeimbangan dilakukan dengan:Single rotation dan Double rotation
Single
Rotation
Single rotation
dilakukan bila kondisi AVL tree waktu akan ditambahkan node baru dan posisi
node baru seperti pada gambar 2. T1, T2, dan T3 adalah subtree yang urutannya
harus seperti demikian serta height- nya harus sama (≥ 0). Hal ini juga berlaku
untuk AVL tree yang merupakan citra cermin (mirror image) gambar 2.
Sebutkan beberapa jenis tree yang memiliki sifat khusus
v Create :
Membentuk binary tree baru yang masih kosong.
v Clear : Mengosongkan
binary tree yang sudah ada.
v Empty : Function
untuk memeriksa apakah binary tree masih kosong.
v Insert : Memasukkan
sebuah node ke dalam tree. Ada tiga pilihan insert: sebagai root,
left child, atau right child. Khusus insert sebagai root, tree harus dalam
keadaan kosong.
v Find : Mencari root,
parent, left child, atau right child dari suatu node. (Tree tak boleh kosong)
v Update : Mengubah
isi dari node yang ditunjuk oleh pointer current. (Tree tidak boleh kosong)
v Retrieve :
Mengetahui isi dari node yang ditunjuk pointer current. (Tree tidak boleh
kosong)
v DeleteSub :
Menghapus sebuah subtree (node beserta seluruh descendantnya) yang ditunjuk
current. Tree tak boleh kosong. Setelah itu pointer current akan berpindah ke
parent dari node yang dihapus.
v Characteristic
: Mengetahui karakteristik dari suatu tree, yakni : size, height, serta average
lengthnya. Tree tidak boleh kosong. (Average Length =
[jumlahNodeLvl1*1+jmlNodeLvl2*2+…+jmlNodeLvln*n]/Size)
v Traverse :
Mengunjungi seluruh node-node pada tree, masing-masing sekali. Hasilnya adalah
urutan informasi secara linier yang tersimpan dalam tree. Adatiga cara
traverse : Pre Order, In Order, dan Post Order.
Tidak ada komentar:
Posting Komentar